Advertisement
Review Article| Volume 41, ISSUE 2, P117-127, May 2023

Download started.

Ok

Advances in Single-Photon Emission Computed Tomography

Hardware, Software, and Myocardial Flow Reserve
Published:February 24, 2023DOI:https://doi.org/10.1016/j.ccl.2023.01.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Cardiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Slomka P.J.
        • Pan T.
        • Berman D.S.
        • et al.
        Advances in SPECT and PET hardware.
        Prog Cardiovasc Dis. 2015; 57: 566-578
        • Slomka P.J.
        • Miller R.J.H.
        • Hu L.H.
        • et al.
        Solid-state detector SPECT myocardial perfusion imaging.
        J Nucl Med. 2019; 60: 1194-1204
        • Di Carli M.F.
        Changing epidemiology of CAD: why should we pay attention?.
        J Nucl Cardiol. 2021; 28: 386-388
        • Jouni H.
        • Askew J.W.
        • Crusan D.J.
        • et al.
        Temporal trends of single-photon emission computed tomography myocardial perfusion imaging in patients with coronary artery disease: a 22-year experience from a tertiary academic medical center.
        Circ Cardiovasc Imaging. 2017; 10: e005628
        • Jespersen L.
        • Hvelplund A.
        • Abildstrøm S.Z.
        • et al.
        Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events.
        Eur Heart J. 2012; 33: 734-744
        • Maddox T.M.
        • Stanislawski M.A.
        • Grunwald G.K.
        • et al.
        Nonobstructive coronary artery disease and risk of myocardial infarction.
        JAMA. 2014; 312: 1754-1763
        • Virani S.S.
        • Alonso A.
        • Benjamin E.J.
        • et al.
        American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. heart disease and stroke statistics-2020 update: a report from the american heart association.
        Circulation. 2020; 141: e139-e596
        • Gimelli A.
        • Bottai M.
        • Genovesi D.
        • et al.
        High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results.
        Eur J Nucl Med Mol Imaging. 2012; 39: 83-90
        • Sharir T.
        • Pinskiy M.
        • Pardes A.
        • et al.
        Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: automated quantification of one-day, stress-first SPECT using a CZT camera.
        J Nucl Cardiol. 2016; 23: 11-20
        • Nakazato R.
        • Tamarappoo B.K.
        • Kang X.
        • et al.
        Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography.
        J Nucl Med. 2010; 51: 1724-1731
        • Duvall W.L.
        • Slomka P.J.
        • Gerlach J.R.
        • et al.
        High-efficiency SPECT MPI: comparison of automated quantification, visual interpretation, and coronary angiography.
        J Nucl Cardiol. 2013; 20: 763-773
        • Nakazato R.
        • Slomka P.J.
        • Fish M.
        • et al.
        Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: results of a multi-center study.
        J Nucl Cardiol. 2015; 22: 266-275
        • Zhang Y.Q.
        • Jiang Y.F.
        • Hong L.
        • et al.
        Diagnostic value of cadmium-zinc-telluride myocardial perfusion imaging versus coronary angiography in coronary artery disease: a PRISMA-compliant meta-analysis.
        Medicine (Baltim). 2019; 98: e14716
        • Oldan J.D.
        • Shaw L.K.
        • Hofmann P.
        • et al.
        Prognostic value of the cadmium-zinc-telluride camera: a comparison with a conventional (Anger) camera.
        J Nucl Cardiol. 2016; 23: 1280-1287
        • Engbers E.M.
        • Timmer J.R.
        • Mouden M.
        • et al.
        Prognostic value of myocardial perfusion imaging with a cadmium-zinc-telluride SPECT Camera in patients suspected of having coronary artery disease.
        J Nucl Med. 2017; 58: 1459-1463
        • Otaki Y.
        • Betancur J.
        • Sharir T.
        • et al.
        5-year prognostic value of quantitative versus visual MPI in subtle perfusion defects: results from REFINE SPECT.
        JACC Cardiovasc Imaging. 2020; 13: 774-785
        • Borges-Neto S.
        • Pagnanelli R.A.
        • Shaw L.K.
        • et al.
        Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies.
        J Nucl Cardiol. 2007; 14: 555-565
        • Ali I.
        • Ruddy T.D.
        • Almgrahi A.
        • et al.
        Half-time SPECT myocardial perfusion imaging with attenuation correction.
        J Nucl Med. 2009; 50: 554-562
        • Murthy V.L.
        • Bateman T.M.
        • Beanlands R.S.
        • et al.
        Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC.
        J Nucl Med. 2018; 59: 273-293
        • Wells R.G.
        • Timmins R.
        • Klein R.
        • et al.
        Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model.
        J Nucl Med. 2014; 55: 1685-1691
        • Timmins R.
        • Klein R.
        • Petryk J.
        • et al.
        Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model.
        Med Phys. 2015; 42: 5075-5083
        • Ben Bouallègue F.
        • Roubille F.
        • Lattuca B.
        • et al.
        SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements.
        J Nucl Med. 2015; 56: 1712-1717
        • Shiraishi S.
        • Sakamoto F.
        • Tsuda N.
        • et al.
        Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera.
        Circ J. 2015; 79: 623-631
        • Miyagawa M.
        • Nishiyama Y.
        • Uetani T.
        • et al.
        Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: comparison with coronary angiography, fractional flow reserve, and the SYNTAX score.
        Int J Cardiol. 2017; 244: 347-353
        • de Souza A.C.D.A.H.
        • Gonçalves B.K.D.
        • Tedeschi A.L.
        • et al.
        Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium-zinc-telluride detectors: relation to angiographic coronary artery disease.
        J Nucl Cardiol. 2021; 28: 876-884
        • Acampa W.
        • Assante R.
        • Mannarino T.
        • et al.
        Low-dose dynamic myocardial perfusion imaging by CZT-SPECT in the identification of obstructive coronary artery disease.
        Eur J Nucl Med Mol Imaging. 2020; 47: 1705-1712
        • Pang Z.
        • Wang J.
        • Li S.
        • et al.
        Diagnostic analysis of new quantitative parameters of low-dose dynamic myocardial perfusion imaging with CZT SPECT in the detection of suspected or known coronary artery disease.
        Int J Cardiovasc Imaging. 2021; 37: 367-378
        • Zavadovsky K.V.
        • Mochula A.V.
        • Maltseva A.N.
        • et al.
        The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients.
        J Nucl Cardiol. 2022; 29: 1051-1063
        • Nkoulou R.
        • Fuchs T.A.
        • Pazhenkottil A.P.
        • et al.
        Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET.
        J Nucl Med. 2016; 57: 1887-1892
        • Wells R.G.
        • Marvin B.
        • Poirier M.
        • et al.
        Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET.
        J Nucl Med. 2017; 58: 2013-2019
        • Agostini D.
        • Roule V.
        • Nganoa C.
        • et al.
        First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study.
        Eur J Nucl Med Mol Imaging. 2018; 45: 1079-1090
        • Giubbini R.
        • Bertoli M.
        • Durmo R.
        • et al.
        Comparison between N13NH3-PET and 99mTc-tetrofosmin-CZT-SPECT in the evaluation of absolute myocardial blood flow and flow reserve.
        J Nucl Cardiol. 2021; 28: 1906-1918
        • Acampa W.
        • Zampella E.
        • Assante R.
        • et al.
        Quantification of myocardial perfusion reserve by CZT-SPECT: a head-to-head comparison with 82rubidium PET.
        J Nucl Cardiol. 2021; 28: 2827-2839
        • Panjer M.
        • Dobrolinska M.
        • Wagenaar N.R.L.
        • et al.
        Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis.
        J Nucl Cardiol. 2022; 29 (Epub ahead of print. PMID: 34350553): 1686-1697
        • Wells R.G.
        • Radonjic I.
        • Clackdoyle D.
        • et al.
        Test-retest precision of myocardial blood flow measurements with 99mTc-tetrofosmin and solid-state detector single photon emission computed tomography.
        Circ Cardiovasc Imaging. 2020; 13: e009769
        • de Souza A.C.D.A.H.
        • Harms H.J.
        • Martell L.
        • et al.
        Accuracy and reproducibility of myocardial blood flow quantification by single photon emission computed tomography imaging in patients with known or suspected coronary artery disease.
        Circ Cardiovasc Imaging. 2022; 15: e013987
        • Liga R.
        • Neglia D.
        • Kusch A.
        • et al.
        Prognostic role of dynamic CZT imaging in CAD patients: interaction between absolute flow and CAD burden.
        JACC Cardiovasc Imaging. 2022; 15: 540-542
        • Daou D.
        • Sabbah R.
        • Coaguila C.
        • et al.
        Feasibility of data-driven cardiac respiratory motion correction of myocardial perfusion CZT SPECT: a pilot study.
        J Nucl Cardiol. 2017; 24: 1598-1607
        • Chan C.
        • Harris M.
        • Le M.
        • et al.
        End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system.
        Phys Med Biol. 2014; 59: 6267-6287
        • Kennedy J.A.
        • William Strauss H.
        Motion detection and amelioration in a dedicated cardiac solid-state CZT SPECT device.
        Med Biol Eng Comput. 2017; 55: 663-671
        • Shrestha U.
        • Sciammarella M.
        • Alhassen F.
        • et al.
        Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: method and validation.
        J Nucl Cardiol. 2017; 24: 268-277
        • Reutter B.W.
        • Gullberg G.T.
        • Huesman R.H.
        Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines.
        IEEE Trans Med Imaging. 2000; 19: 434-450
        • Slomka P.J.
        • Miller R.J.
        • Isgum I.
        • et al.
        Application and translation of artificial intelligence to cardiovascular imaging in nuclear medicine and noncontrast CT.
        Semin Nucl Med. 2020; 50: 357-366
        • Miller R.J.H.
        • Huang C.
        • Liang J.X.
        • et al.
        Artificial intelligence for disease diagnosis and risk prediction in nuclear cardiology.
        J Nucl Cardiol. 2022; 29: 1754-1762