Advertisement

The Cardiorenal Syndrome in Heart Failure

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Cardiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ronco C.
        • Haapio M.
        • House A.A.
        • et al.
        Cardiorenal syndrome.
        J Am Coll Cardiol. 2008; 52: 1527-1539
        • Damman K.
        • Valente M.A.
        • Voors A.A.
        • et al.
        Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis.
        Eur Heart J. 2014; 35: 455-469
        • Dries D.L.
        • Exner D.V.
        • Domanski M.J.
        • et al.
        The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction.
        J Am Coll Cardiol. 2000; 35: 681-689
        • Hillege H.L.
        • Girbes A.R.
        • de Kam P.J.
        • et al.
        Renal function, neurohormonal activation, and survival in patients with chronic heart failure.
        Circulation. 2000; 102: 203-210
        • Costanzo M.R.
        • Ronco C.
        • Abraham W.T.
        • et al.
        Extracorporeal ultrafiltration for fluid overload in heart failure: current status and prospects for further research.
        J Am Coll Cardiol. 2017; 69: 2428-2445
        • Brisco M.A.
        • Zile M.R.
        • Hanberg J.S.
        • et al.
        Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial.
        J Card Fail. 2016; 22: 753-760
        • Ahmad T.
        • Jackson K.
        • Rao V.S.
        • et al.
        Worsening renal function in acute heart failure patients undergoing aggressive diuresis is not associated with tubular injury.
        Circulation. 2018; 137: 2016-2028
        • Levey A.S.
        • Inker L.A.
        Assessment of glomerular filtration rate in health and disease: a state of the art review.
        Clin Pharmacol Ther. 2017; 102: 405-419
        • Bragadottir G.
        • Redfors B.
        • Ricksten S.E.
        Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury–true GFR versus urinary creatinine clearance and estimating equations.
        Crit Care. 2013; 17: R108
        • Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group
        KDIGO clinical practice guideline for acute kidney injury.
        Kidney Int Suppl. 2012; 2: 1-138
        • Xu K.
        • Rosenstiel P.
        • Paragas N.
        • et al.
        Unique transcriptional programs identify subtypes of AKI.
        J Am Soc Nephrol. 2017; 28: 1729-1740
        • Nickolas T.L.
        • Schmidt-Ott K.M.
        • Canetta P.
        • et al.
        Diagnostic and prognostic stratification in the emergency department using urinary bio markers of nephron damage: a multicenter prospective cohort study.
        J Am Coll Cardiol. 2012; 59: 246-255
        • Barasch J.
        • Zager R.
        • Bonventre J.V.
        Acute kidney injury: a problem of definition.
        Lancet. 2017; 389: 779-781
        • Waikar S.S.
        • Betensky R.A.
        • Emerson S.C.
        • et al.
        Imperfect gold standards for kidney injury biomarker evaluation.
        J Am Soc Nephrol. 2012; 23: 13-21
        • Costanzo M.R.
        Verdict in: congestion guilty!.
        JACC Heart Fail. 2015; 3: 762-764
        • Miller W.L.
        Fluid volume overload and congestion in heart failure. time to reconsider pathophysiology and how volume is assessed.
        Circ Heart Fail. 2016; 9: e002922
        • Schrier R.W.
        Body fluid volume regulation in health and disease: a unifying hypothesis.
        Ann Intern Med. 1990; 113: 155-159
        • Rothe C.F.
        Reflex control of veins and vascular capacitance.
        Physiol Rev. 1983; 63: 1281-1342
        • Miller W.L.
        • Mullan B.P.
        Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation.
        JACC Heart Fail. 2014; 2: 298-305
        • Seymour W.B.
        • Pritchard W.H.
        • Longley L.P.
        • et al.
        Cardiac output, blood and interstitial fluid volumes, total circulating serum protein, and kidney function during cardiac failure and after improvement.
        J Clin Invest. 1942; 21: 229-240
        • Setoguchi S.
        • Stevenson L.W.
        • Schneeweiss S.
        Repeated hospitalizations predict mortality in the community population with heart failure.
        Am Heart J. 2007; 154: 260-266
        • Androne S.A.
        • Hryniewicz K.
        • Hudaihed A.
        • et al.
        Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes.
        Am J Cardiol. 2004; 93: 1254-1259
        • Cotter G.
        • Metra M.
        • Milo-Cotter O.
        • et al.
        Fluid overload in acute heart failure—re-distribution and other mechanisms beyond fluid accumulation.
        Eur J Heart Fail. 2008; 10: 165-169
        • Metra M.
        • Dei Cas L.
        • Bristow M.R.
        The pathophysiology of acute heart failure—it is a lot about fluid accumulation.
        Am Heart J. 2008; 155: 1-5
        • Gheorghiade M.
        • Filippatos G.
        • De Luca L.
        • et al.
        Congestion in acute heart failure syndromes: an essential target of evaluation and treatment.
        Am J Med. 2006; 119: S3-S10
        • Tyberg J.V.
        How changes in venous capacitance modulate cardiac output.
        Pflugers Arch. 2002; 445: 10-17
        • Fallick C.
        • Sobotka P.A.
        • Dunlap M.E.
        Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation.
        Circ Heart Fail. 2011; 4: 669-675
        • Sharma R.
        • Francis D.P.
        • Pitt B.
        • et al.
        Haemoglobin predicts survival in patients with chronic heart failure: a substudy of the ELITE II trial.
        Eur Heart J. 2004; 25: 1021-1028
        • Gagnon D.R.
        • Zhang T.J.
        • Brand F.N.
        • et al.
        Hematocrit and the risk of cardiovascular disease—the Framingham study: a 34-year follow-up.
        Am Heart J. 1994; 127: 674-682
        • Androne A.S.
        • Katz S.D.
        • Lund L.
        • et al.
        Hemodilution is common in patients with advanced heart failure.
        Circulation. 2003; 107: 226-229
        • Verbrugge F.H.
        • Dupont M.
        • Steels P.
        • et al.
        The kidney in congestive heart failure: “are natriuresis, sodium, and diuretics really the good, the bad and the ugly?”.
        Eur J Heart Fail. 2014; 16: 133-142
        • Lote C.J.
        • Snape B.M.
        Collecting duct flow rate as a determinant of equilibration between urine and renal papilla in the rat in the presence of a maximal antidiuretic hormone concentration.
        J Physiol. 1977; 270: 533-544
        • Allen G.G.
        • Barratt L.J.
        Effect of aldosterone on the transepithelial potential difference of the rat distal tubule.
        Kidney Int. 1981; 19: 678-686
        • Woodhall P.B.
        • Tisher C.C.
        Response of the distal tubule and cortical collecting duct to vasopressin in the rat.
        J Clin Invest. 1973; 52: 3095-3108
        • Schreier R.W.
        • Abraham W.T.
        Hormones and hemodynamics in heart failure.
        N Engl J Med. 1999; 341: 577-585
        • Verbrugge F.H.
        • Dupont M.
        • Steels P.
        • et al.
        Abdominal contributions to cardiorenal dysfunction in congestive heart failure.
        J Am Coll Cardiol. 2013; 62: 485-495
        • Aukland K.
        • Reed R.K.
        Interstitial-lymphatic mechanisms in the control of extracellular fluid volume.
        Physiol Rev. 1993; 73: 1-78
        • Guyton A.C.
        Interstitial fluid pressure. II. Pressure-volume curves of interstitial space.
        Circ Res. 1965; 16: 452-460
        • Sandek A.
        • Rauchhaus M.
        • Anker S.D.
        • et al.
        The emerging role of the gut in chronic heart failure.
        Curr Opin Clin Nutr Metab Care. 2008; 11: 632-639
        • Manzone T.A.
        • Dam H.Q.
        • Soltis D.
        • et al.
        Blood volume analysis: a new technique and new clinical interest reinvigorate a classic study.
        J Nucl Med Technol. 2007; 35: 55-63
        • Strobeck J.E.
        • Feldshuh J.
        • Miller W.L.
        Heart failure outcomes with volume-guided management.
        JACC Heart Fail. 2018; 6: 940-948
        • Bera T.K.
        Bioelectrical impedance methods for noninvasive health monitoring: a review.
        J Med Eng. 2014; https://doi.org/10.1155/2014/381251
        • Shotan A.
        • Blondheim D.S.
        • Kazatsker M.
        • et al.
        Non-invasive lung IMPEDANCE-guided preemptive treatment in chronic heart failure patients: a randomized controlled trial (IMPEDANCE-HF trial).
        J Card Fail. 2016; 22: 713-722
        • Burkhoff D.
        Bioimpedance: has its time finally come.
        J Card Fail. 2016; 22: 723-724
        • Drazner M.H.
        • Rame J.E.
        • Stevenson L.W.
        • et al.
        Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure.
        N Engl J Med. 2001; 345: 574-581
        • Zile M.R.
        • Bennett T.D.
        • St. John Sutton M.
        • et al.
        Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures.
        Circulation. 2008; 118: 1433-1441
        • Abraham W.T.
        • Stough W.G.
        • Piña I.L.
        • et al.
        Trials of implantable monitoring devices in heart failure: which design is optimal?.
        Nat Rev Cardiol. 2014; 11: 576-585
        • Stevenson L.W.
        • Zile M.
        • Bennett T.D.
        • et al.
        Chronic ambulatory intracardiac pressures and future heart failure events.
        Circ Heart Fail. 2010; 3: 580-587
        • Adamson P.B.
        • Abraham W.T.
        • Aaron M.
        • et al.
        CHAMPION trial rationale and design: the longterm safety and clinical efficacy of a wireless pulmonary artery pressure monitoring system.
        J Card Fail. 2011; 17: 3-10
        • Abraham W.T.
        • Adamson P.B.
        • Bourge R.C.
        • et al.
        Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomized controlled trial.
        Lancet. 2011; 377: 658-666
        • Costanzo M.R.
        • Stevenson L.W.
        • Adamson P.B.
        • et al.
        Interventions linked to decreased heart failure hospitalizations during ambulatory pulmonary artery pressure monitoring.
        JACC Heart Fail. 2016; 4: 333-344
        • Givertz M.M.
        • Stevenson L.W.
        • Costanzo M.R.
        • et al.
        • on behalf of the CHAMPION Trial Investigators
        Pulmonary artery pressure-guided management of patients with heart failure and reduced ejection fraction.
        J Am Coll Cardiol. 2017; 70: 1875-1886
        • Adamson P.B.
        • Abraham W.T.
        • Bourge R.C.
        • et al.
        Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction.
        Circ Heart Fail. 2014; 7: 935-944
        • Heywood J.T.
        • Jermyn R.
        • Shavelle D.
        • et al.
        Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS sensor.
        Circulation. 2017; 135: 1509-1517
        • Desai A.S.
        • Bhimaraj A.
        • Bharmi R.
        • et al.
        Ambulatory hemodynamic monitoring reduces heart failure hospitalizations in “real-world” clinical practice.
        J Am Coll Cardiol. 2017; 69: 2357-2365
        • Yu C.M.
        • Wang L.
        • Chau E.
        • et al.
        Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization.
        Circulation. 2005; 112: 841-848
        • van Veldhuisen D.J.
        • Braunschweig F.
        • Conraads V.
        • et al.
        • for the DOT-HF Investigators
        Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure.
        Circulation. 2011; 124: 1719-1726
        • Boehmer J.P.
        • Hariharan R.
        • Devecchi F.G.
        • et al.
        A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the MultiSENSE Study.
        JACC Heart Fail. 2017; 5: 216-225
        • Costanzo M.R.
        The luck of having a cardiac implantable electronic device.
        Circ Heart Fail. 2018; https://doi.org/10.1161/CIRCHEARTFAILURE.118.004894
        • Price S.
        • Platz E.
        • Cullen L.
        • et al.
        for the Acute Heart Failure Study Group of the European Society of Cardiology Acute Cardiovascular Care Association Echocardiography and lung ultrasonography for the assessment and management of acute heart failure.
        Nat Rev Cardiol. 2017; 14: 422-440
        • Platz E.
        • Hempel D.
        • Pivetta E.
        • et al.
        Echocardiographic and lung ultrasound characteristics in ambulatory patients with dyspnea or prior heart failure.
        Echocardiography. 2014; 31: 133-139
        • Trezzi M.
        • Torzillo D.
        • Ceriani E.
        • et al.
        Lung ultrasonography for the assessment of rapid extravascular water variation: evidence from hemodialysis patients.
        Intern Emerg Med. 2013; 8: 409-415
        • Volpicelli G.
        • Caramello V.
        • Cardinale L.
        • et al.
        Bedside ultrasound of the lung for the monitoring of acute decompensated heart failure.
        Am J Emerg Med. 2008; 26: 585-591
        • Gargani L.
        • Frassi F.
        • Soldati G.
        • et al.
        Ultrasound lung comets for the differential diagnosis of acute cardiogenic dyspnoea: a comparison with natriuretic peptides.
        Eur J Heart Fail. 2008; 10: 70-77
        • Guiotto G.
        • Masarone M.
        • Paladino F.
        • et al.
        Inferior vena cava collapsibility to guide fluid removal in slow continuous ultrafiltration: a pilot study.
        Intensive Care Med. 2010; 36: 692-696
        • Blehar D.J.
        • Dickman E.
        • Gaspari R.
        Identification of congestive heart failure via respiratory variation of inferior vena cava diameter.
        Am J Emerg Med. 2009; 27: 71-75
        • Bayes-Genis A.
        • Lupón J.
        • Jaffe A.S.
        Can natriuretic peptides be used to guide therapy?.
        EJIFCC. 2016; 27: 208-216
        • Felker G.M.
        • Ahmad T.
        • Anstronm K.J.
        • et al.
        Rationale and design of the GUIDE-IT study; guiding evidence based therapy using biomarker intensified treatment in heart failure.
        JACC Heart Fail. 2014; 2: 457-465
        • Singh D.
        • Shrestha K.
        • Testani J.M.
        • et al.
        Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure.
        J Card Fail. 2014; 20: 392-399
        • ter Maaten J.M.
        • Valente M.A.
        • Damman K.
        • et al.
        Diuretic response in acute heart failure—pathophysiology, evaluation, and therapy.
        Nat Rev Cardiol. 2015; 12: 184-192
        • Voors A.A.
        • Davison B.A.
        • Teerlink J.R.
        • et al.
        • for the RELAX-AHF investigators
        Diuretic response in patients with acute decompensated heart failure: characteristics and clinical outcome—an analysis from RELAX-AHF.
        Eur J Heart Fail. 2014; 16: 1230-1240
        • Gheorghiade M.
        • Filippatos G.
        Reassessing treatment of acute heart failure syndromes: the ADHERE registry.
        Eur Heart J Suppl. 2005; 7: B13-B19
        • Felker G.M.
        • Lee K.L.
        • Bull D.A.
        • et al.
        • for the NHLBI Heart Failure Clinical Research Network
        Diuretic strategies in patients with acute decompensated heart failure.
        N Engl J Med. 2011; 364: 797-805
        • Konstam M.A.
        • Gheorghiade M.
        • Burnett Jr., J.C.
        • et al.
        • for the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) investigators
        Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial.
        JAMA. 2007; 297: 1319-1331
        • Massie B.M.
        • O’Connor C.M.
        • Metra M.
        • et al.
        • for the PROTECT investigators and committees
        Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure.
        N Engl J Med. 2010; 363: 1419-1428
        • O’Connor C.M.
        • Starling R.C.
        • Hernandez A.F.
        • et al.
        Effect of nesiritide in patients with acute decompensated heart failure.
        N Engl J Med. 2011; 365: 32-43
        • Ronco C.
        • Ricci Z.
        • Bellomo R.
        • et al.
        Extracorporeal ultrafiltration for the treatment of overhydration and congestive heart failure.
        Cardiology. 2001; 96: 155-168
        • Costanzo M.R.
        • Guglin M.E.
        • Saltzberg M.T.
        • et al.
        • for the UNLOAD trial investigators
        Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure.
        J Am Coll Cardiol. 2007; 49: 675-683
        • Grodin J.L.
        • Carter S.
        • Bart B.A.
        • et al.
        Direct comparison of ultrafiltration to pharmacological decongestion in heart failure: a per-protocol analysis of CARRESS-HF.
        Eur J Heart Fail. 2018; 20: 1148-1156
        • Bart B.A.
        • Goldsmith S.R.
        • Lee K.L.
        • et al.
        • for the Heart Failure Clinical Research Network
        Ultrafiltration in decompensated heart failure with cardiorenal syndrome.
        N Engl J Med. 2012; 367: 2296-2304
        • Costanzo M.R.
        • Kazory A.
        Better late than never: the true results of CARRESS-HF.
        Eur J Heart Fail. 2018; 20: 1157-1159
        • Marenzi G.
        • Muratori M.
        • Cosentino E.R.
        • et al.
        Continuous ultrafiltration for congestive heart failure: the CUORE trial.
        J Card Fail. 2014; 20: 9-17
        • Lorenz J.N.
        • Weihprecht H.
        • Schnermann J.
        • et al.
        Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport.
        Am J Physiol. 1991; 260: F486-F493
        • Schlatter E.
        • Salomonsson M.
        • Persson A.E.
        • et al.
        Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2Cl-K+ cotransport.
        Pflugers Arch. 1989; 414: 286-290
        • Costanzo M.R.
        • Negoianu D.
        • Fonarow G.C.
        • et al.
        Rationale and design of the Aquapheresis Versus Intravenous Diuretics and Hospitalization for Heart Failure (AVOID-HF) trial.
        Am Heart J. 2015; 170l: 471-482
        • Costanzo M.R.
        • Negoianu D.
        • Jaski B.E.
        • et al.
        Aquapheresis versus intravenous diuretics and hospitalizations for heart failure.
        JACC Heart Fail. 2016; 4: 95-105
        • Ponikowski P.
        • Voors A.A.
        • Anker S.D.
        • et al.
        2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC.
        Eur Heart J. 2016; 37: 2129-2200
        • Yancy C.W.
        • Jessup M.
        • Bozkurt B.
        • et al.
        2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
        J Am Coll Cardiol. 2013; 62: e147-e239
        • Schrier R.W.
        • Bansal S.
        Pulmonary hypertension, right ventricular failure, and kidney: different from left ventricular failure?.
        Clin J Am Soc Nephrol. 2008; 3: 1232-1237
      1. Available at: https://reprievecardio.com/. Accessed February 28, 2019.

        • Mahoney D.
        • Rao V.
        • Asher J.
        • et al.
        Development of a direct peritoneal sodium removal technique with salt-free solution.
        J Card Fail. 2018; 24: S34
        • Feld Y.
        • Hanani H.
        • Costanzo M.R.
        Hydrostatic pressure gradient ultrafiltration device: a novel approach for extracellular fluid removal.
        J Heart Lung Transplant. 2018; 37: 794-796
        • Vora A.N.
        • Schuyler Jones W.
        • DeVore A.D.
        • et al.
        First-in-human experience with Aortix intraaortic pump.
        Catheter Cardiovasc Interv. 2019; 93: 428-433
      2. Available at: http://www.magentamed.com/. Accessed February 28, 2019.