Advertisement

The Gut Axis Involvement in Heart Failure

Focus on Trimethylamine N-oxide

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Cardiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Braunwald E.
        Heart failure.
        JACC Heart Fail. 2013; 1: 1-20
        • Ponikowski P.
        • Voors A.A.
        • Anker S.D.
        • et al.
        2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC.
        Eur J Heart Fail. 2016; 18: 891-975
        • Krack A.
        • Sharma R.
        • Figulla H.R.
        • et al.
        The importance of the gastrointestinal system in the pathogenesis of heart failure.
        Eur Heart J. 2005; 26: 2368-2374
        • Nagatomo Y.
        • Tang W.H.
        Intersections between microbiome and heart failure: revisiting the gut hypothesis.
        J Card Fail. 2015; 21: 973-980
        • Sandek A.
        • Bjarnason I.
        • Volk H.D.
        • et al.
        Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure.
        Int J Cardiol. 2012; 157: 80-85
        • Marra A.M.
        • Arcopinto M.
        • Salzano A.
        • et al.
        Detectable interleukin-9 plasma levels are associated with impaired cardiopulmonary functional capacity and all-cause mortality in patients with chronic heart failure.
        Int J Cardiol. 2016; 209: 114-117
        • Pasini E.
        • Aquilani R.
        • Testa C.
        • et al.
        Pathogenic gut flora in patients with chronic heart failure.
        JACC Heart Fail. 2016; 4: 220-227
        • Baker J.R.
        • Chaykin S.
        The biosynthesis of trimethylamine-N-oxide.
        J Biol Chem. 1962; 237: 1309-1313
        • Cassambai S.
        • Salzano A.
        • Yazaki Y.
        • et al.
        Impact of acute choline loading on circulating trimethylamine N-oxide levels.
        Eur J Prev Cardiol. 2019; (2047487319831372)https://doi.org/10.1177/2047487319831372
        • Albert C.L.
        • Tang W.H.W.
        Metabolic biomarkers in heart failure.
        Heart Fail Clin. 2018; 14: 109-118
        • Suzuki T.
        • Heaney L.M.
        • Bhandari S.S.
        • et al.
        Trimethylamine N-oxide and prognosis in acute heart failure.
        Heart. 2016; 102: 841-848
        • Troseid M.
        • Ueland T.
        • Hov J.R.
        • et al.
        Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure.
        J Intern Med. 2015; 277: 717-726
        • Tang W.H.
        • Wang Z.
        • Shrestha K.
        • et al.
        Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure.
        J Card Fail. 2015; 21: 91-96
        • Schuett K.
        • Kleber M.E.
        • Scharnagl H.
        • et al.
        Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction.
        J Am Coll Cardiol. 2017; 70: 3202-3204
        • Tang W.H.
        • Wang Z.
        • Fan Y.
        • et al.
        Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis.
        J Am Coll Cardiol. 2014; 64: 1908-1914
        • Suzuki T.
        • Yazaki Y.
        • Voors A.A.
        • et al.
        Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure (from BIOSTAT-CHF).
        Eur J Heart Fail. 2019; 21: 877-886
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat Med. 2013; 19: 576-585
        • Wang Z.
        • Roberts A.B.
        • Buffa J.A.
        • et al.
        Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis.
        Cell. 2015; 163: 1585-1595
        • Bennett B.J.
        • de Aguiar Vallim T.Q.
        • Wang Z.
        • et al.
        Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.
        Cell Metab. 2013; 17: 49-60
        • Mayatepek E.
        • Flock B.
        • Zschocke J.
        Benzydamine metabolism in vivo is impaired in patients with deficiency of flavin-containing monooxygenase 3.
        Pharmacogenetics. 2004; 14: 775-777
        • Fennema D.
        • Phillips I.R.
        • Shephard E.A.
        Trimethylamine and trimethylamine N-Oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease.
        Drug Metab Dispos. 2016; 44: 1839-1850
        • Ufnal M.
        • Zadlo A.
        • Ostaszewski R.
        TMAO: a small molecule of great expectations.
        Nutrition. 2015; 31: 1317-1323
        • Christodoulou J.
        Trimethylaminuria: an under-recognised and socially debilitating metabolic disorder.
        J Paediatr Child Health. 2012; 48: E153-E155
        • Zou Q.
        • Bennion B.J.
        • Daggett V.
        • et al.
        The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea.
        J Am Chem Soc. 2002; 124: 1192-1202
        • Welch W.J.
        Role of quality control pathways in human diseases involving protein misfolding.
        Semin Cell Dev Biol. 2004; 15: 31-38
        • Leandro P.
        • Gomes C.M.
        Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning.
        Mini Rev Med Chem. 2008; 8: 901-911
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Suzuki T.
        • Heaney L.M.
        • Jones D.J.
        • et al.
        Trimethylamine N-oxide and risk stratification after acute myocardial infarction.
        Clin Chem. 2017; 63: 420-428
        • Sala-Vila A.
        • Guasch-Ferre M.
        • Hu F.B.
        • et al.
        Dietary alpha-Linolenic acid, marine omega-3 fatty acids, and mortality in a population with high fish consumption: findings from the PREvencion con DIeta MEDiterranea (PREDIMED) Study.
        J Am Heart Assoc. 2016; 5 ([pii:e002543])
        • Albert C.M.
        • Campos H.
        • Stampfer M.J.
        • et al.
        Blood levels of long-chain n-3 fatty acids and the risk of sudden death.
        N Engl J Med. 2002; 346: 1113-1118
        • Cheung W.
        • Keski-Rahkonen P.
        • Assi N.
        • et al.
        A metabolomic study of biomarkers of meat and fish intake.
        Am J Clin Nutr. 2017; 105: 600-608
        • Zhu W.
        • Gregory J.C.
        • Org E.
        • et al.
        Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.
        Cell. 2016; 165: 111-124
        • Chen K.
        • Zheng X.
        • Feng M.
        • et al.
        Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice.
        Front Physiol. 2017; 8: 139
        • Boutagy N.E.
        • Neilson A.P.
        • Osterberg K.L.
        • et al.
        Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet.
        Obesity (Silver Spring). 2015; 23: 2357-2363
        • Zhang H.
        • Meng J.
        • Yu H.
        Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a western diet.
        Front Physiol. 2017; 8: 944
        • Rasmussen L.G.
        • Winning H.
        • Savorani F.
        • et al.
        Assessment of the effect of high or low protein diet on the human urine metabolome as measured by NMR.
        Nutrients. 2012; 4: 112-131
        • Bergeron N.
        • Williams P.T.
        • Lamendella R.
        • et al.
        Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk.
        Br J Nutr. 2016; 116: 2020-2029
        • Janeiro M.
        • Ramírez M.
        • Milagro F.
        • et al.
        Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target.
        Nutrients. 2018; 10: 1398
        • Wang Z.
        • Bergeron N.
        • Levison B.S.
        • et al.
        Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women.
        Eur Heart J. 2019; 40: 583-594
        • Carding S.
        • Verbeke K.
        • Vipond D.T.
        • et al.
        Dysbiosis of the gut microbiota in disease.
        Microb Ecol Health Dis. 2015; 26: 26191
        • Yin J.
        • Liao S.X.
        • He Y.
        • et al.
        Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack.
        J Am Heart Assoc. 2015; 4 ([pii:e002699])
        • Organ C.L.
        • Otsuka H.
        • Bhushan S.
        • et al.
        Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure.
        Circ Heart Fail. 2016; 9: e002314
        • Randrianarisoa E.
        • Lehn-Stefan A.
        • Wang X.
        • et al.
        Relationship of serum trimethylamine N-oxide (TMAO) levels with early atherosclerosis in humans.
        Sci Rep. 2016; 6: 26745
        • Sun G.
        • Yin Z.
        • Liu N.
        • et al.
        Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity.
        Biochem Biophys Res Commun. 2017; 493: 964-970
        • Gan X.T.
        • Ettinger G.
        • Huang C.X.
        • et al.
        Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat.
        Circ Heart Fail. 2014; 7: 491-499
        • Martin F.P.
        • Wang Y.
        • Sprenger N.
        • et al.
        Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model.
        Mol Syst Biol. 2008; 4: 157
        • Savi M.
        • Bocchi L.
        • Bresciani L.
        • et al.
        Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide.
        Molecules. 2018; 23 ([pii:E549])
        • Borges N.A.
        • Stenvinkel P.
        • Bergman P.
        • et al.
        Effects of probiotic supplementation on trimethylamine-N-oxide plasma levels in hemodialysis patients: a pilot study.
        Probiotics Antimicrob Proteins. 2019; 11: 648-654
        • Salzano A.
        • Marra A.M.
        • Proietti M.
        • et al.
        Biomarkers in heart failure and associated diseases.
        Dis Markers. 2019; 2019: 8768624
        • Salzano A.
        • Marra A.M.
        • D'Assante R.
        • et al.
        Biomarkers and imaging: complementary or subtractive?.
        Heart Fail Clin. 2019; 15: 321-331
        • Voors A.A.
        • Anker S.D.
        • Cleland J.G.
        • et al.
        A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure: rationale, design, and baseline characteristics of BIOSTAT-CHF.
        Eur J Heart Fail. 2016; 18: 716-726
        • Streng K.W.
        • Nauta J.F.
        • Hillege H.L.
        • et al.
        Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction.
        Int J Cardiol. 2018; 271: 132-139
        • Yazaki Y.
        • Salzano A.
        • Nelson C.P.
        • et al.
        Geographical location affects the levels and association of trimethylamine N-oxide with heart failure mortality in BIOSTAT-CHF: a post-hoc analysis.
        Eur J Heart Fail. 2019 Jul 28; ([Epub ahead of print])https://doi.org/10.1002/ejhf.1550
        • Salzano A.
        • Israr M.Z.
        • Yazaki Y.
        • et al.
        Combined use of trimethylamine N-oxide with BNP for risk stratification in heart failure with preserved ejection fraction: findings from the DIAMONDHFpEF study.
        Eur J Prev Cardiol. 2019 Aug 14; (2047487319870355. [Epub ahead of print])https://doi.org/10.1177/2047487319870355
        • Hayashi T.
        • Yamashita T.
        • Watanabe H.
        • et al.
        Gut microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure.
        Circ J. 2018; 83: 182-192
        • Schiattarella G.G.
        • Sannino A.
        • Toscano E.
        • et al.
        Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis.
        Eur Heart J. 2017; 38: 2948-2956