Causal Effect of Lipids and Lipoproteins on Atherosclerosis

Lessons from Genomic Studies


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Cardiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Goldstein J.L.
        • Brown M.S.
        A century of cholesterol and coronaries: from plaques to genes to statins.
        Cell. 2015; 161: 161-172
        • Skålén K.
        • Gustafsson M.
        • Rydberg E.K.
        • et al.
        Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.
        Nature. 2002; 417: 750-754
        • Chapman M.J.
        • Le Goff W.
        • Guerin M.
        • et al.
        Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors.
        Eur Heart J. 2010; 31: 149-164
        • Emerging Risk Factors Collaborators
        Lipid-related markers and cardiovascular disease prediction.
        JAMA. 2012; 307: 2499-2506
        • Cholesterol Treatment Trialists’ (CTT) Collaboration
        Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials.
        Lancet. 2010; 376: 1670-1681
        • Cannon C.P.
        • Blazing M.A.
        • Giugliano R.P.
        • et al.
        Ezetimibe added to statin therapy after acute coronary syndromes.
        N Engl J Med. 2015; 372: 2387-2397
        • Sabatine M.S.
        • Giugliano R.P.
        • Keech A.C.
        • et al.
        Evolocumab and clinical outcomes in patients with cardiovascular disease.
        N Engl J Med. 2017; 376: 1713-1722
        • Lincoff A.M.
        • Nicholls S.J.
        • Riesmeyer J.S.
        • et al.
        Evacetrapib and cardiovascular outcomes in high-risk vascular disease.
        N Engl J Med. 2017; 376: 1933-1942
        • HPS3/TIMI55–REVEAL Collaborative Group
        Effects of anacetrapib in patients with atherosclerotic vascular disease.
        N Engl J Med. 2017; 377: 1217-1227
        • Keech A.
        • Simes R.J.
        • Barter P.
        • et al.
        • FIELD study investigators
        Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial.
        Lancet. 2005; 366: 1849-1861
        • Ginsberg H.N.
        • Elam M.B.
        • Lovato L.C.
        • et al.
        • ACCORD Study Group
        Effects of combination lipid therapy in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1563-1574
        • Rubins H.B.
        • Robins S.J.
        • Collins D.
        • et al.
        Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group.
        N Engl J Med. 1999; 341: 410-418
        • AIM-HIGH Investigators
        Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N Engl J Med. 2011; 365: 2255-2267
        • HPS2-THRIVE Collaborative Group
        Effects of extended-release niacin with laropiprant in high-risk patients.
        N Engl J Med. 2014; 371: 203-212
        • Schwartz G.G.
        • Olsson A.G.
        • Abt M.
        • et al.
        Effects of dalcetrapib in patients with a recent acute coronary syndrome.
        N Engl J Med. 2012; 367: 2089-2099
        • Davey Smith G.
        • Hemani G.
        Mendelian randomization: genetic anchors for causal inference in epidemiological studies.
        Hum Mol Genet. 2014; 23: R89-R98
        • Ference B.A.
        Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps.
        Curr Opin Lipidol. 2015; 26: 566-571
        • Ference B.A.
        How to use Mendelian randomization to anticipate the results of randomized trials.
        Eur Heart J. 2017;
        • Global Lipids Genetics Consortium
        Discovery and refinement of loci associated with lipid levels.
        Nat Genet. 2013; 45: 1274-1283
        • CARDIoGRAMplusC4D Consortium.
        A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease.
        Nat Genet. 2015; 47: 1121-1130
        • Ference B.A.
        • Yoo W.
        • Alesh I.
        • et al.
        Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis.
        J Am Coll Cardiol. 2012; 60: 2631-2639
        • Würtz P.
        • Wang Q.
        • Soininen P.
        • et al.
        Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase.
        J Am Coll Cardiol. 2016; 67: 1200-1210
        • Ference B.A.
        • Majeed F.
        • Penumetcha R.
        • et al.
        Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study.
        J Am Coll Cardiol. 2015; 65: 1552-1561
        • Ference B.A.
        • Robinson J.G.
        • Brook R.D.
        • et al.
        Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes.
        N Engl J Med. 2016; 375: 2144-2153
        • Cohen J.C.
        • Boerwinkle E.
        • Mosley Jr., T.H.
        • et al.
        Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.
        N Engl J Med. 2006; 354: 1264-1272
        • Ference B.A.
        • Cannon C.P.
        • Landmesser U.
        • et al.
        Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration.
        Eur Heart J. 2017;
        • Ference B.A.
        • Ginsberg H.N.
        • Graham I.
        • et al.
        Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.
        Eur Heart J. 2017; 38: 2459-2472
        • Silverman M.G.
        • Ference B.A.
        • Im K.
        • et al.
        Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis.
        JAMA. 2016; 316: 1289-1297
        • Thompson A.
        • Di Angelantonio E.
        • Sarwar N.
        • et al.
        Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk.
        JAMA. 2008; 299: 2777-2788
        • Johannsen T.H.
        • Frikke-Schmidt R.
        • Schou J.
        • et al.
        Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects.
        J Am Coll Cardiol. 2012; 60: 2041-2048
        • Ridker P.M.
        • Paré G.
        • Parker A.N.
        • et al.
        Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: genomewide analysis among 18 245 initially healthy women from the Women's Genome Health Study.
        Circ Cardiovasc Genet. 2009; 2: 26-33
        • Ference B.A.
        • Kastelein J.J.P.
        • Ginsberg H.N.
        • et al.
        Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk.
        JAMA. 2017; 318: 947-956
        • Hovingh G.K.
        • Kastelein J.J.
        • van Deventer S.J.
        • et al.
        Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial.
        Lancet. 2015; 386: 452-460
        • Cannon C.P.
        • Shah S.
        • Dansky H.M.
        • et al.
        Safety of anacetrapib in patients with or at high risk for coronary heart disease.
        N Engl J Med. 2010; 363: 2406-2415
        • Burgess S.
        • Freitag D.F.
        • Khan H.
        • et al.
        Using multivariable Mendelian randomization to disentangle the causal effects of lipid fractions.
        PLoS One. 2014; 9: e108891
        • White J.
        • Swerdlow D.I.
        • Preiss D.
        • et al.
        Association of lipid fractions with risks for coronary artery disease and diabetes.
        JAMA Cardiol. 2016; 1: 692-699
        • Gaudet D.
        • Alexander V.J.
        • Baker B.F.
        • et al.
        Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia.
        N Engl J Med. 2015; 373: 438-447
        • Frikke-Schmidt R.
        • Nordestgaard B.G.
        • Stene M.C.
        • et al.
        Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease.
        JAMA. 2008; 299: 2524-2532
        • Voight B.F.
        • Peloso G.M.
        • Orho-Melander M.
        • et al.
        Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study.
        Lancet. 2012; 380: 572-580
        • Holmes M.V.
        • Asselbergs F.W.
        • Palmer T.M.
        • et al.
        Mendelian randomization of blood lipids for coronary heart disease.
        Eur Heart J. 2015; 36: 539-550
        • Andrews J.
        • Janssan A.
        • Nguyen T.
        • et al.
        Effect of serial infusions of reconstituted high-density lipoprotein (CER-001) on coronary atherosclerosis: rationale and design of the CARAT study.
        Cardiovasc Diagn Ther. 2017; 7: 45-51
        • Tardif J.C.
        • Ballantyne C.M.
        • Barter P.
        • et al.
        Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial.
        Eur Heart J. 2014; 35: 3277-3286
        • Nordestgaard B.G.
        • Langsted A.
        Lipoprotein(a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology.
        J Lipid Res. 2016; 57: 1953-1975
        • Emerging Risk Factors Collaboration
        Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality.
        JAMA. 2009; 302: 412-423
        • Clarke R.
        • Peden J.F.
        • Hopewell J.C.
        • et al.
        Genetic variants associated with Lp(a) lipoprotein level and coronary disease.
        N Engl J Med. 2009; 361: 2518-2528
        • Kamstrup P.R.
        • Tybjaerg-Hansen A.
        • Steffensen R.
        • et al.
        Genetically elevated lipoprotein(a) and increased risk of myocardial infarction.
        JAMA. 2009; 301: 2331-2339
        • Emdin C.A.
        • Khera A.V.
        • Natarajan P.
        • et al.
        Phenotypic characterization of genetically lowered human lipoprotein(a) levels.
        J Am Coll Cardiol. 2016; 68: 2761-2772