Advertisement

Blunt Cardiac Injury

Published:September 07, 2012DOI:https://doi.org/10.1016/j.ccl.2012.07.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Cardiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Velmahos G.C.
        • Karaiskakis M.
        • Salim A.
        • et al.
        Normal electrocardiography and serum troponin I levels preclude the presence of clinically significant blunt cardiac injury.
        J Trauma. 2003; 54: 45-51
        • Illig K.A.
        • Swierzewski M.J.
        • Feliciano D.V.
        • et al.
        A rational screening and treatment strategy based on the electrocardiogram alone for suspected cardiac contusion.
        Am J Surg. 1991; 162: 537-544
        • Dowd M.D.
        • Krug S.
        Pediatric blunt cardiac injury: epidemiology, clinical features, and diagnosis.
        J Trauma. 1996; 40: 61-67
        • Fildes J.J.
        • Betlej T.M.
        • Manglano R.
        • et al.
        Limiting cardiac evaluation in patients with suspected myocardial contusion.
        Am Surg. 1995; 61: 832-835
        • Healy M.A.
        • Brown R.
        • Fleiszer D.
        Blunt cardiac injury: is this diagnosis necessary?.
        J Trauma. 1990; 30: 137-146
        • Maenza R.L.
        • Seaberg D.
        • D’Amico F.
        A meta-analysis of blunt cardiac trauma: ending myocardial confusion.
        Am J Emerg Med. 1996; 14: 237-241
        • Ismailov R.M.
        • Ness R.B.
        • Redmond C.K.
        • et al.
        Trauma associated with dysrhythmias: results from a large matched case-control study.
        J Trauma. 2007; 62: 1186-1191
        • Lindstaedt M.
        • Germing A.
        • Lawo T.
        • et al.
        Acute and long-term clinical significance of myocardial contusion following blunt thoracic trauma: results of a prospective study.
        J Trauma. 2002; 52: 479-485
        • Hadjizacharia P.
        • O’Keefe T.
        • Brown C.V.
        • et al.
        Incidence, risk factors, and outcomes for atrial arrhythmias in trauma patients.
        Am Surg. 2011; 77: 634-639
        • Berk W.A.
        ECG findings in nonpenetrating chest trauma: A review.
        J Emerg Med. 1987; 5: 209-215
        • Go A.S.
        • Hylek E.M.
        • Phillips K.A.
        • et al.
        Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study.
        JAMA. 2001; 285: 2370-2375
        • Benitez R.M.
        • Gold M.R.
        Immediate and persistent complete heart block following a horse kick.
        Pacing Clin Electrophysiol. 1999; 22: 816-818
        • Pontillo D.
        • Capezzuto A.
        • Achilli A.
        • et al.
        Bifasicular block complicating blunt cardiac injury.
        Angiology. 1994; 45: 883-890
        • Lazaros G.A.
        • Ralli D.G.
        • Moundaki V.S.
        • et al.
        Delayed development of complete heart block after blunt chest trauma.
        Injury. 2004; 35: 1300-1302
        • Potkin R.T.
        • Werner J.A.
        • Trobaugh G.B.
        • et al.
        Evaluation of non-invasive tests of cardiac damage in suspected cardiac contusion.
        Circulation. 1982; 66: 627-631
        • Tenzer M.L.
        The spectrum of myocardial contusion: a review.
        J Trauma. 1985; 25: 620-627
        • Maron B.J.
        • Estes N.A.
        Commotio cordis.
        N Engl J Med. 2010; 362: 917-927
        • Nesbitt A.D.
        • Cooper P.J.
        • Kohl P.
        Rediscovering commotio cordis.
        Lancet. 2001; 357: 1195-1197
        • Maron B.J.
        • Poliac L.C.
        • Kaplan J.A.
        • et al.
        Blunt impact to the chest leading to sudden death from cardiac arrest during sports activities.
        N Engl J Med. 1995; 333: 337-342
        • Link M.S.
        • Wang P.J.
        • Pandian N.G.
        • et al.
        An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis).
        N Engl J Med. 1998; 338: 1805-1811
        • Link M.S.
        • Maron B.J.
        • VanderBrink B.A.
        • et al.
        Impact directly over the cardiac silhouette is necessary to produce ventricular fibrillation in an experimental model of commotio cordis.
        J Am Coll Cardiol. 2001; 37: 649-654
        • Maron B.J.
        • Doerer J.J.
        • Haas T.S.
        • et al.
        Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006.
        Circulation. 2009; 119: 1085-1092
        • Maron B.J.
        • Gohman B.A.
        • Kyle S.B.
        • et al.
        Clinical profile and spectrum of commotio cordis.
        JAMA. 2002; 287: 1142-1146
        • Weinstock J.
        • Maron B.J.
        • Song C.
        • et al.
        Failure of commercially available chest wall protectors to prevent sudden cardiac death induced by chest wall blows in an experimental model of commotio cordis.
        Pediatrics. 2006; 117: e656-e662
        • Link M.S.
        • Maron B.J.
        • Wang P.J.
        • et al.
        Upper and lower limits of vulnerability to sudden arrhythmic death with chest-wall impact (commotio cordis).
        J Am Coll Cardiol. 2003; 41: 99-104
        • Doerer J.J.
        • Haas T.S.
        • Estes N.A.
        • et al.
        Evaluation of chest barriers for protection against sudden death due to commotio cordis.
        Am J Cardiol. 2007; 99: 857-859
        • Link M.S.
        • Wang P.J.
        • VanderBrink B.A.
        • et al.
        Selective activation of the K+ ATP channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (commotio cordis).
        Circulation. 1999; 100: 413-418
        • Maron B.J.
        • Wentzel D.C.
        • Zenovich A.G.
        • et al.
        Death in a young athlete due to commotio cordis despite prompt external defibrillation.
        Heart Rhythm. 2005; 2: 991-993
        • Capucci A.
        • Aschieri D.
        • Piepoli M.F.
        • et al.
        Survival from sudden cardiac arrest via early defibrillation without traditional education in cardiopulmonary resuscitation.
        Circulation. 2002; 106: 1065-1070
        • Myerburg R.J.
        • Velez M.
        • Rosenberg D.G.
        • et al.
        Automatic external defibrillators for prevention of out-of-hospital sudden death: effectiveness of the automatic external defibrillator.
        J Cardiovasc Electrophysiol. 2003; 14: S108-S116
        • Caffrey S.L.
        • Willoughby P.J.
        • Pepe P.E.
        • et al.
        Public use of automated external defibrillators.
        N Engl J Med. 2002; 347: 1242-1246
        • Winkle R.A.
        • Mead R.H.
        • Ruder M.A.
        • et al.
        Effect of duration of ventricular fibrillation on defibrillator efficacy in humans.
        Circulation. 1990; 81: 1477-1481
        • Field J.M.
        • Hazinski M.F.
        • Sayre M.R.
        • et al.
        Executive summary: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care.
        Circulation. 2010; 122: S640-S656
        • Deady B.
        • Innes G.
        Sudden death of a young hockey player: case report of commotio cordis.
        J Emerg Med. 1999; 17: 459-462
        • Bertinchant J.P.
        • Polge A.
        • Mohty D.
        • et al.
        Evaluation of incidence, clinical significance, and prognostic value of circulating cardiac troponin I and T elevation in hemodynamically stable patients with suspected myocardial contusion after blunt chest trauma.
        J Trauma. 2000; 48: 924-931
        • Biffl W.L.
        • Moore F.A.
        • Moore E.E.
        • et al.
        Cardiac enzymes are irrelevant in the patient with suspected myocardial contusion.
        Am J Surg. 1994; 168: 523-528
        • Dubrow T.J.
        • Mihalka J.
        • Eisenhauer D.M.
        • et al.
        Myocardial contusion in the stable patient: what level of care is appropriate?.
        Surgery. 1989; 106: 267-273
        • Gunnar W.P.
        • Martin M.
        • Smith R.F.
        • et al.
        The utility of cardiac evaluation in the hemodynamically stable patient with suspected myocardial contusion.
        Am Surg. 1991; 57: 373-377
        • Sturaitis M.
        • McCallum D.
        • Sutherland G.
        • et al.
        Lack of significant long-term sequelae following traumatic myocardial contusion.
        Arch Intern Med. 1986; 146: 1765-1769
        • Sybrandy K.C.
        • Cramer M.J.
        • Burgersdijk C.
        Diagnosing cardiac contusion: old wisdom and new insights.
        Heart. 2003; 89: 485-489
        • Fulda G.
        • Brathwaite C.E.
        • Rodriguez A.
        • et al.
        Blunt traumatic rupture of the heart and pericardium: a ten-year experience (1979-1989).
        J Trauma. 1991; 31: 167-172
        • Perchinsky M.J.
        • Long W.B.
        • Hill J.G.
        Blunt cardiac rupture. The Emanuel Trauma Center experience.
        Arch Surg. 1995; 130: 852-856
        • Leavitt B.J.
        • Meyer J.A.
        • Morton J.R.
        • et al.
        Survival following nonpenetrating traumatic rupture of cardiac chambers.
        Ann Thorac Surg. 1987; 44: 532-535
        • Brathwaite C.E.
        • Rodriguez A.
        • Turney S.Z.
        • et al.
        Blunt traumatic cardiac rupture. A 5-year experience.
        Ann Surg. 1990; 212: 701-704
        • Parmley L.F.
        • Manion W.C.
        • Mattingly T.W.
        Nonpenetrating traumatic injury of the heart.
        Circulation. 1958; 18: 371-396
        • Bright E.F.
        • Beck C.S.
        Non-penetrating wounds of the heart: a clinical and experimental study.
        Am Heart J. 1935; 10: 293
        • Liedtke A.J.
        • DeMuth W.E.
        Nonpenetrating cardiac injuries: a collective review.
        Am Heart J. 1973; 86: 687-697
        • Schwaitzberg S.D.
        • Khalil K.G.
        Isolated traumatic aortic valvular insufficiency with rapid pulmonary deterioration. Report of two cases.
        Arch Surg. 1985; 120: 971-973
        • McDonald M.L.
        • Orszulak T.A.
        • Bannon M.P.
        • et al.
        Mitral valve injury after blunt chest trauma.
        Ann Thorac Surg. 1996; 61: 1024-1029
        • van Son J.A.M.
        • Danielson G.K.
        • Schaff H.V.
        • et al.
        Traumatic tricuspid valve insufficiency: experience in thirteen patients.
        J Thorac Cardiovasc Surg. 1994; 108: 893-898
        • Banning A.P.
        • Pillai R.
        Non-penetrating cardiac and aortic trauma.
        Heart. 1997; 78: 226-229
        • Prêtre R.
        • Faidutti B.
        Surgical management of aortic valve injury after nonpenetrating trauma.
        Ann Thorac Surg. 1993; 6: 1426-1431
        • Goel S.S.
        • Harvey J.E.
        • Penn M.
        • et al.
        Images in cardiovascular medicine. Left anterior descending coronary artery occlusion secondary to blunt chest trauma.
        Circulation. 2009; 119: 1975-1976
        • Suzuki I.
        • Sato M.
        • Hoshi N.
        • et al.
        Coronary arterial laceration after blunt chest trauma.
        N Engl J Med. 2000; 343: 742-743
        • Ngaage D.L.
        • Singh S.K.
        • Bresnahan J.F.
        • et al.
        Chronic traumatic aneurysm of the left main coronary artery causing myocardial infarction.
        Ann Thorac Surg. 2005; 80: 2383
        • Carbone I.
        • Francone M.
        • Galea N.
        • et al.
        Images in cardiology. Computed-tomography and magnetic resonance imaging assessment of traumatic left anterior descending coronary dissection causing acute myocardial infarction.
        J Am Coll Cardiol. 2011; 57: e3
        • Neschis D.G.
        • Scalea T.M.
        • Flinn W.R.
        • et al.
        Blunt aortic injury.
        N Engl J Med. 2008; 359: 1708-1716
        • Woodring J.H.
        The normal mediastinum in blunt traumatic rupture of the thoracic aorta and brachiocephalic arteries.
        J Emerg Med. 1990; 8: 467-476
        • Demetriades D.
        • Gomez H.
        • Velmahos G.C.
        • et al.
        Routine helical computed tomographic evaluation of the mediastinum in high-risk blunt trauma patients.
        Arch Surg. 1998; 133: 1084-1088
        • Melton S.M.
        • Kerby J.D.
        • McGiffin D.
        • et al.
        The evolution of chest computed tomography for the definitive diagnosis of blunt aortic injury: a single-center experience.
        J Trauma. 2004; 56: 243-250
        • Malhotra A.K.
        • Fabian T.C.
        • Croce M.A.
        • et al.
        Minimal aortic injury: a lesion associated with advancing diagnostic techniques.
        J Trauma. 2001; 51: 1042-1048
        • Fabian T.C.
        • Davis K.A.
        • Gavant M.L.
        • et al.
        Prospective study of blunt aortic injury: helical CT is diagnostic and antihypertensive therapy reduces rupture.
        Ann Surg. 1998; 227: 666-676
        • Smith M.D.
        • Cassidy J.M.
        • Souther S.
        • et al.
        Transesophageal echocardiography in the diagnosis of traumatic rupture of the aorta.
        N Engl J Med. 1995; 332: 356-362
        • Parmley L.F.
        • Mattingly T.W.
        • Manion W.C.
        • et al.
        Nonpenetrating traumatic injury to the aorta.
        Circulation. 1958; 17: 1086-1101
        • Feczko J.D.
        • Lynch L.
        • Pless J.E.
        • et al.
        An autopsy case review of 142 nonpenetrating (blunt) injuries of the aorta.
        J Trauma. 1992; 33: 846-849
        • Von Oppell U.O.
        • Dunne T.T.
        • De Groot M.K.
        • et al.
        Traumatic aortic rupture: twenty-year metaanalysis of mortality and risk of paraplegia.
        Ann Thorac Surg. 1994; 58: 585-593
        • Prêtre R.
        • Chilcott M.
        Blunt trauma to the heart and great vessels.
        N Engl J Med. 1997; 336: 626-632
        • Demetriades D.
        • Velmahos G.C.
        • Scalea T.M.
        • et al.
        Blunt traumatic thoracic aortic injuries: early or delayed repair: results of an American Association for the Surgery of Trauma prospective study.
        J Trauma. 2009; 66: 967-973
        • Pacini D.
        • Angeli E.
        • Fattori R.
        • et al.
        Traumatic rupture of the thoracic aorta: ten years of delayed management.
        J Thorac Cardiovasc Surg. 2005; 129: 880-884
        • Xenos E.S.
        • Abedi N.N.
        • Davenport D.L.
        • et al.
        Meta-analysis of endovascular vs open repair for traumatic descending thoracic aorta rupture.
        J Vasc Surg. 2008; 48: 1343-1351
        • Xenos E.S.
        • Bietz G.J.
        • Davenport D.L.
        Endoluminal versus open repair of descending thoracic aortic rupture: a review of the National Trauma Databank.
        Ther Adv Cardiovasc Dis. 2011; 5: 221-225
        • Hagan P.G.
        • Nienaber C.A.
        • Isselbacher E.M.
        • et al.
        The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease.
        JAMA. 2000; 283: 897-903
        • Prêtre R.
        • LaHarpe R.
        • Cheretakis A.
        • et al.
        Blunt injury to the ascending aorta: three patterns of presentation.
        Surgery. 1996; 119: 603-610