Advertisement
Review Article| Volume 28, ISSUE 1, P127-138, February 2010

Download started.

Ok

Stem Cell Therapy for the Treatment of Acute Myocardial Infarction

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Cardiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Assmus B.
        • Honold J.
        • Schachinger V.
        • et al.
        Transcoronary transplantation of progenitor cells after myocardial infarction.
        N Engl J Med. 2006; 355: 1222-1232
        • Assmus B.
        • Schachinger V.
        • Teupe C.
        • et al.
        Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI).
        Circulation. 2002; 106: 3009-3017
        • Bartunek J.
        • Vanderheyden M.
        • Vandekerckhove B.
        • et al.
        Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety.
        Circulation. 2005; 112: I178-I183
        • Cao F.
        • Sun D.
        • Li C.
        • et al.
        Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up.
        Eur Heart J. 2009; 30: 1986-1994
        • Dib N.
        • Michler R.E.
        • Pagani F.D.
        • et al.
        Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up.
        Circulation. 2005; 112: 1748-1755
        • Dill T.
        • Schachinger V.
        • Rolf A.
        • et al.
        Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy.
        Am Heart J. 2009; 157: 541-547
        • Huikuri H.V.
        • Kervinen K.
        • Niemela M.
        • et al.
        Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction.
        Eur Heart J. 2008; 29: 2723-2732
        • Janssens S.
        • Dubois C.
        • Bogaert J.
        • et al.
        Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.
        Lancet. 2006; 367: 113-121
        • Kang H.J.
        • Lee H.Y.
        • Na S.H.
        • et al.
        Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial.
        Circulation. 2006; 114: I145-I151
        • Lunde K.
        • Solheim S.
        • Aakhus S.
        • et al.
        Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1199-1209
        • Meluzin J.
        • Janousek S.
        • Mayer J.
        • et al.
        Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction.
        Int J Cardiol. 2008; 128: 185-192
        • Meyer G.P.
        • Wollert K.C.
        • Lotz J.
        • et al.
        Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.
        Circulation. 2006; 113: 1287-1294
        • Pagani F.D.
        • DerSimonian H.
        • Zawadzka A.
        • et al.
        Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation.
        J Am Coll Cardiol. 2003; 41: 879-888
        • Penicka M.
        • Horak J.
        • Kobylka P.
        • et al.
        Intracoronary injection of autologous bone marrow-derived mononuclear cells in patients with large anterior acute myocardial infarction: a prematurely terminated randomized study.
        J Am Coll Cardiol. 2007; 49: 2373-2374
        • Schachinger V.
        • Erbs S.
        • Elsasser A.
        • et al.
        Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1210-1221
        • Stamm C.
        • Westphal B.
        • Kleine H.D.
        • et al.
        Autologous bone-marrow stem-cell transplantation for myocardial regeneration.
        Lancet. 2003; 361: 45-46
        • Strauer B.E.
        • Brehm M.
        • Zeus T.
        • et al.
        Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study.
        J Am Coll Cardiol. 2005; 46: 1651-1658
        • Strauer B.E.
        • Brehm M.
        • Zeus T.
        • et al.
        Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.
        Circulation. 2002; 106: 1913-1918
        • Tatsumi T.
        • Ashihara E.
        • Yasui T.
        • et al.
        Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction.
        Circ J. 2007; 71: 1199-1207
        • Tendera M.
        • Wojakowski W.
        • Ruzyllo W.
        • et al.
        Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial.
        Eur Heart J. 2009; 30: 1313-1321
        • Wollert K.C.
        • Meyer G.P.
        • Lotz J.
        • et al.
        Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.
        Lancet. 2004; 364: 141-148
        • Yousef M.
        • Schannwell C.M.
        • Kostering M.
        • et al.
        The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction.
        J Am Coll Cardiol. 2009; 53: 2262-2269
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • Bjorklund A.
        • Svendsen C.
        Stem cells. Breaking the brain-blood barrier.
        Nature. 1999; 397: 569-570
        • Vassilopoulos G.
        • Wang P.R.
        • Russell D.W.
        Transplanted bone marrow regenerates liver by cell fusion.
        Nature. 2003; 422: 901-904
        • Alvarez-Dolado M.
        • Pardal R.
        • Garcia-Verdugo J.M.
        • et al.
        Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.
        Nature. 2003; 425: 968-973
        • Murry C.E.
        • Soonpaa M.H.
        • Reinecke H.
        • et al.
        Haematopoietic stem cells do not trans-differentiate into cardiac myocytes in myocardial infarcts.
        Nature. 2004; 428: 664-668
        • Wagers A.J.
        • Sherwood R.I.
        • Christensen J.L.
        • et al.
        Little evidence for developmental plasticity of adult hematopoietic stem cells.
        Science. 2002; 297: 2256-2259
        • Frangogiannis N.G.
        • Smith C.W.
        • Entman M.L.
        The inflammatory response in myocardial infarction.
        Cardiovasc Res. 2002; 53: 31-47
        • Hori M.
        • Nishida K.
        Oxidative stress and left ventricular remodelling after myocardial infarction.
        Cardiovasc Res. 2009; 81: 457-464
        • Pasotti M.
        • Prati F.
        • Arbustini E.
        The pathology of myocardial infarction in the pre- and post-interventional era.
        Heart. 2006; 92: 1552-1556
        • Vanden Hoek T.L.
        • Becker L.B.
        • Shao Z.
        • et al.
        Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes.
        J Biol Chem. 1998; 273: 18092-18098
        • Severs N.J.
        • Bruce A.F.
        • Dupont E.
        • et al.
        Remodelling of gap junctions and connexion expression in diseased myocardium.
        Cardiovasc Res. 2008; 80: 9-19
        • Frangogiannis N.G.
        • Mendoza L.H.
        • Lindsey M.L.
        • et al.
        IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury.
        J Immunol. 2000; 165: 2798-2808
        • Gwechenberger M.
        • Mendoza L.H.
        • Youker K.A.
        • et al.
        Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions.
        Circulation. 1999; 99: 546-551
        • Wanner G.A.
        • Muller P.E.
        • Ertel W.
        • et al.
        Differential effect of anti-TNF-alpha antibody on proinflammatory cytokine release by Kupffer cells following liver ischemia and reperfusion.
        Shock. 1999; 11: 391-395
        • Lindsey M.L.
        • Mann D.L.
        • Entman M.L.
        • et al.
        Extracellular matrix remodeling following myocardial injury.
        Ann Med. 2003; 35: 316-326
        • Schellings M.W.
        • Pinto Y.M.
        • Heymans S.
        Matricellular proteins in the heart: possible role during stress and remodeling.
        Cardiovasc Res. 2004; 64: 24-31
        • Dewald O.
        • Ren G.
        • Duerr G.D.
        • et al.
        Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction.
        Am J Pathol. 2004; 164: 665-677
        • Frangogiannis N.G.
        • Lindsey M.L.
        • Michael L.H.
        • et al.
        Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion.
        Circulation. 1998; 98: 699-710
        • Frangogiannis N.G.
        • Ren G.
        • Dewald O.
        • et al.
        Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts.
        Circulation. 2005; 111: 2935-2942
        • Schellings M.W.
        • Vanhoutte D.
        • Swinnen M.
        • et al.
        Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction.
        J Exp Med. 2009; 206: 113-123
        • Shimazaki M.
        • Nakamura K.
        • Kii I.
        • et al.
        Periostin is essential for cardiac healing after acute myocardial infarction.
        J Exp Med. 2008; 205: 295-303
        • Frangogiannis N.G.
        • Michael L.H.
        • Entman M.L.
        Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb).
        Cardiovasc Res. 2000; 48: 89-100
        • Dobaczewski M.
        • Bujak M.
        • Zymek P.
        • et al.
        Extracellular matrix remodeling in canine and mouse myocardial infarcts.
        Cell Tissue Res. 2006; 324: 475-488
        • Frangogiannis N.G.
        The immune system and cardiac repair.
        Pharm Res. 2008; 58: 88-111
        • Richard V.
        • Murry C.E.
        • Reimer K.A.
        Healing of myocardial infarcts in dogs. Effects of late reperfusion.
        Circulation. 1995; 92: 1891-1901
        • Weinheimer C.J.
        • Toeniskoetter P.D.
        • Conversano A.
        • et al.
        Pretreatment with buflomedil enhances ventricular function by reducing the dysfunctional area after transient coronary artery occlusion.
        Cardiovasc Res. 1992; 26: 470-475
        • Trueblood N.A.
        • Xie Z.
        • Communal C.
        • et al.
        Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin.
        Circ Res. 2001; 88: 1080-1087
        • Pasceri V.
        • Patti G.
        • Di Sciascio G.
        Prevention of myocardial damage during coronary intervention.
        Cardiovasc Hematol Disord Drug Targets. 2006; 6: 77-83
        • Prisk V.
        • Huard J.
        Muscle injuries and repair: the role of prostaglandins and inflammation.
        Histol Histopathol. 2003; 18: 1243-1256
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • et al.
        Bone marrow cells regenerate infarcted myocardium.
        Nature. 2001; 410: 701-705
        • Balsam L.B.
        • Wagers A.J.
        • Christensen J.L.
        • et al.
        Haematopoietic stem cells adopt mature hematopoietic fates in ischaemic myocardium.
        Nature. 2004; 428: 668-673
        • Reffelmann T.
        • Konemann S.
        • Kloner R.A.
        Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy.
        J Am Coll Cardiol. 2009; 53: 305-308
        • Lipinski M.J.
        • Biondi-Zoccai G.G.
        • Abbate A.
        • et al.
        Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials.
        J Am Coll Cardiol. 2007; 50: 1761-1767
        • Singh S.
        • Arora R.
        • Handa K.
        • et al.
        Stem cells improve left ventricular function in acute myocardial infarction.
        Clin Cardiol. 2009; 32: 176-180
        • Jain M.
        • DerSimonian H.
        • Brenner D.A.
        • et al.
        Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction.
        Circulation. 2001; 103: 1920-1927
        • Terrovitis J.
        • Stuber M.
        • Youssef A.
        • et al.
        Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart.
        Circulation. 2008; 117: 1555-1562
        • Bergsmedh A.
        • Ehnfors J.
        • Spetz A.L.
        • et al.
        A Cre-loxP based system for studying horizontal gene transfer.
        FEBS Lett. 2007; 581: 2943-2946
        • Bergsmedh A.
        • Szeles A.
        • Henriksson M.
        • et al.
        Horizontal transfer of oncogenes by uptake of apoptotic bodies.
        Proc Natl Acad Sci U S A. 2001; 98: 6407-6411
        • Atsma D.E.
        • Fibbe W.E.
        • Rabelink T.J.
        Opportunities and challenges for mesenchymal stem cell-mediated heart repair.
        Curr Opin Lipidol. 2007; 18: 645-649
        • Seeger F.H.
        • Tonn T.
        • Krzossok N.
        • et al.
        Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction.
        Eur Heart J. 2007; 28: 766-772
        • Murry C.E.
        • Richard V.J.
        • Reimer K.A.
        • et al.
        Ischemic preconditioning slows energy metabolism and delays ultra structural damage during a sustained ischemic episode.
        Circ Res. 1990; 66: 913-931
        • Schwarz E.R.
        • Reffelmann T.
        • Kloner R.A.
        Clinical effects of ischemic preconditioning.
        Curr Opin Cardiol. 1999; 14: 340-348
        • Diederich N.J.
        • Goetz C.G.
        The placebo treatments in neurosciences: new insights from clinical and neuroimaging studies.
        Neurology. 2008; 71: 677-684
        • Mercado R.
        • Constantoyannis C.
        • Mandat T.
        • et al.
        Expectation and the placebo effect in Parkinson 's disease patients with subthalamic nucleus deep brain stimulation.
        Mov Disord. 2006; 21: 1457-1461
        • Tcheng J.E.
        • Madan M.
        • O'Shea J.C.
        • et al.
        Ethics and equipoise: rationale for a placebo-controlled study design of platelet glycoprotein IIb/IIIa inhibition in coronary intervention.
        J Interv Cardiol. 2003; 16: 97-105
        • Khurana R.
        • Simons M.
        Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease.
        Trends Cardiovasc Med. 2003; 13: 116-122
        • Packer M.
        The placebo effect in heart failure.
        Am Heart J. 1990; 120: 1579-1582
        • Simons M.
        • Annex B.H.
        • Laham R.J.
        • et al.
        Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial.
        Circulation. 2002; 105: 788-793
        • Wagers A.J.
        • Weissman I.L.
        Plasticity of adult stem cells.
        Cell. 2004; 116: 639-648
        • Bu L.
        • Jiang X.
        • Martin-Puig S.
        • et al.
        Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages.
        Nature. 2009; 460: 113-117
        • Cai C.L.
        • Liang X.
        • Shi Y.
        • et al.
        Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart.
        Dev Cell. 2003; 5: 877-889
        • Moretti A.
        • Caron L.
        • Nakano A.
        • et al.
        Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.
        Cell. 2006; 127: 1151-1165
        • Freed C.R.
        • Breeze R.E.
        • Schneck S.A.
        Transplantation of fetal mesencephalic tissue in Parkinson's disease.
        N Engl J Med. 1995; 333: 730-731
        • Olanow C.W.
        • Freeman T.
        • Kordower J.
        Transplantation of embryonic dopamine neurons for severe Parkinson's disease.
        N Engl J Med. 2001; 345 ([author reply 147]): 146